Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model

نویسندگان

  • Wenceslao González-Manteiga
  • María José Lombardía
  • Isabel Molina
  • Domingo Morales
  • Laureano Santamaría
چکیده

A Multivariate Fay-Herriot model is used to aid the prediction of small area parameters of dependent variables with sample data aggregated to area level. The empirical best linear unbiased predictor of the parameter vector is used, and an approximation of the elements of the mean cross product error matrix is obtained by an extension of the results of Prasad and Rao (1990) to the multiparameter case. Three different bootstrap approximations of those elements are introduced, and a simulation study is developed in order to compare the efficiency of all presented approximations, including a comparison under lack of normality. Further, the number of replications needed for the bootstrap procedures to get stabilized are studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Fay-Herriot models for small area estimation

Introduction Multivariate Fay–Herriot models for estimating small area indicators are introduced. Among the available procedures for fitting linear mixed models, the residual maximum likelihood (REML) is employed. The empirical best predictor (EBLUP) of the vector of area means is derived. An approximation to the matrix of mean squared crossed prediction errors (MSE) is given and four MSE estim...

متن کامل

Area specific confidence intervals for a small area mean under the Fay-Herriot model

‎Small area estimates have received much attention from both private and public sectors due to the growing demand for effective planning of health services‎, ‎apportioning of government funds and policy and decision making‎. ‎Surveys are generally designed to give representative estimates at national or district level‎, ‎but estimates of variables of interest are oft...

متن کامل

Parametric transformed Fay-Herriot model for small area estimation

Consider the small area estimation when positive area-level data like income, revenue, harvests or production are available. Although a conventional method is the logtransformed Fay-Herriot model, the log-transformation is not necessarily appropriate. Another popular method is the Box-Cox transformation, but it has drawbacks that the maximum likelihood estimator (ML) of the transformation param...

متن کامل

An Application of Linear Model in Small Area Estimationof Orange production in Fars province

Methods for small area estimation have been received great attention in recent years due to growing demand for reliable small area estimation that are needed in development planings, allocation of government funds and marking business decisions. The key question in small area estimation is how to obtain reliable estimations when sample size is small. When only a few observations(or even no o...

متن کامل

On Estimation of Mean Squared Errors of Benchmarked Empirical Bayes Estimators

We consider benchmarked empirical Bayes (EB) estimators under the basic area-level model of Fay and Herriot while requiring the standard benchmarking constraint. In this paper we determine the excess mean squared error (MSE) from constraining the estimates through benchmarking. We show that the increase due to benchmarking is O(m−1), where m is the number of small areas. Furthermore, we find an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2008